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Casimir-Polder interaction between an atom and a dielectric grating
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We develop the scattering approach to calculate the exact dispersive Casimir-Polder potential between a
ground-state atom and a rectangular grating. Our formalism allows, in principle, for arbitrary values of the
grating amplitude and period, and of the atom-grating distance. We compute numerically the potential for a
Rb atom on top of a Si grating and compare the results with the potential for a flat surface taken at the local
atom-surface distance (proximity force approximation). Except for very short separation distances, the potential
is nearly sinusoidal along the direction transverse to the grooves.
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I. INTRODUCTION

Vacuum field fluctuations are modified close to material
surfaces, resulting in the usually attractive Casimir-Polder
force [1] on a nearby ground-state atom. This effect has been
measured by a number of experimental techniques, including
deflection of atomic beams [2], classical [3,4] and quantum
reflection by the attractive Casimir-Polder potential [5–7], and
dipole oscillations of a Bose-Einstein condensate (BEC) close
to a dielectric surface [8].

More recently, experiments involving nontrivial geometries
paved the way to additional applications. The measured
reflection probability of a BEC from a Si surface with a square
array of closely spaced thin pillars increased by a factor of
nearly four as compared to a flat surface [9]. A Si surface
with an array of wall-like parallel ridges was shown to work
as a reflection diffraction grating for atoms incident along
a nearly grazing direction [10]. Several diffraction orders
in the quantum reflection from a microstructured grating
consisting of Cr strips on a flat quartz substrate were measured
[11]. Alternatively, nanofabricated transmission atom gratings
allow for a direct measurement of the dispersive atom-surface
potential in the nonretarded van der Waals regime [12].

Remarkable experimental progress has also been achieved
in the closely related field of Casimir interactions between
material surfaces [13]. Recent experiments have revealed
interesting geometry effects in the normal force between
a Si rectangular (lamellar) grating and a metallic spherical
surface [14,15] and in the lateral force between two metallic
gratings [16].

This ensemble of interesting experiments clearly motivates
the theoretical analysis of how geometry molds the quantum
field fluctuations giving rise to the Casimir-Polder and Casimir
interactions. In this paper, we develop a nonperturbative theory
for the Casimir-Polder interaction between a ground-state atom
and a dielectric grating. Our results are valid, in principle,
for arbitrary values of the grating amplitude. Preliminary
results were already applied in the analysis of quantum vortex
generation in a BEC induced by the Casimir-Polder potential
of a rotating grating [17]. Here we present a detailed derivation
of the Casimir-Poder potential and a variety of numerical
examples that illustrate its main characteristics.

Calculations beyond the simple planar geometry are
extremely involved because different frequency and length
scales contribute to the interaction. Since dispersive forces are
not additive, it is not possible to build up the atom-surface
potential from the more elementary atom-atom interaction. In
the pairwise summation (PWS) approach, the nonadditivity
is corrected by a “calibration” provided by the planar case
at a given separation range [18]. Since the nonadditivity
correction is geometry and distance dependent, PWS results
are barely more accurate [19] than the results obtained by
taking the proximity force approximation (PFA) [20], in which
the potential is simply approximated by the planar case taken
at the local atom-surface distance.

Theoretical tools have been developed only recently for
analyzing nontrivial geometries [21] beyond the PFA and
PWS approaches. In the scattering approach [22,23], the
interaction potential is written in terms of reflection operators
describing nonspecular scattering (diffraction) by nonplanar
surfaces. This allows for a description of the Casimir effect
that captures its full geometry dependence. In the specific case
of the Casimir-Polder interaction between a ground-state atom
and a material surface, the exact potential can be calculated
for arbitrary distances, taking due account of finite response
times of both atom and material medium, provided the surface
reflection operator is known [24].

By computing the reflection operator of the grating as a
perturbation of the planar symmetry, Refs. [24,25] derived
the Casimir-Polder potential to first order in the grating
amplitude. The resulting expressions are valid only when
the grating amplitude is the smallest length scale in the
problem. However, in order to enhance the nontrivial geometry
effects associated with the departure from the planar sym-
metry, it is of course interesting to have large amplitudes.
This was indeed the case in the atom-surface [9,10] and
surface-surface [14,16] experiments carried out so far. In
this paper, we compute the exact reflection operator by
applying the differential theory of diffraction gratings [26],
and then derive the exact Casimir-Polder potential from the
scattering approach [24]. Our approach is similar to the
theory developed in Refs. [27–29] for treating surface-surface
interactions.
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Nonperturbative results were previously obtained for a toy
model describing the Casimir interaction of a scalar field
satisfying ideal Dirichlet boundary conditions with a small
sphere above a corrugated surface [30]. In this paper, we
develop a full electromagnetic theory that takes into account
the electromagnetic responses of real atoms and material
surfaces (we consider a Rb atom above a Si grating in the
numerical examples). This allows us to cover the entire range
of separation distances, from the unretarded short-distance
van der Waals regime to the Casimir-Polder large-distance
asymptotic limit.

The paper is organized as follows. In Sec. II we derive the
formal results for the Casimir energy which are applied in the
numerical implementations discussed in Sec. III. Section IV
presents our concluding remarks.

II. SCATTERING APPROACH TO THE
ATOM-GRATING INTERACTION

We consider a spherically symmetric ground-state atom
located at (xA,yA,zA) above a nonplanar surface (see Fig. 1),
corresponding to a profile function h(x,y) giving the local
surface height with respect to a reference plane at z = 0. It
is convenient to develop the scattering formula in the plane-
wave basis |k, ± ,p〉 [22], where k is the two-dimensional
wave-vector component parallel to the xy plane, + (−)
represents upward (downward) propagation direction, and
p stands for polarization. We assume that the atom-surface
separation distance zA − h(xA,yA) is much larger than the
atomic dimensions, allowing us to approximate the potential
to first order in the atomic polarizability α(ω) or, equivalently,
to first order in the atomic reflection operator [24]

〈k, − ,p|RA(iξ )|k′, + ,p′〉
= − ξ 2

2κ

α(iξ )

εoc2
ei(k−k′)·rAe−(κ+κ ′)zA ε̂−

p (k,iξ ) · ε̂+
p′(k′,iξ ′), (1)

with rA = (xA,yA) and κ =
√
k2 + ξ 2/c2 representing the

wave-vector z component associated with the imaginary
frequency ξ (κ ′ is defined in terms of k′ in the same way).
ε̂±

p (k,iξ ) are unit vectors corresponding to a given polarization
basis (to be chosen later in this section).

The zero-temperature Casimir energy is then obtained by
expanding the general scattering formula [22,23] to first order
in RA. This corresponds to neglecting all multiple reflections
between the atom and the surface (reflection operator RS) but
the single round-trip containing one reflection by each one (see
Ref. [24] for a detailed derivation). The Casimir potential is
then written as an integral over the positive imaginary semiaxis
in the complex frequency plane,

U (xA,yA,zA) = −h̄

∫ ∞

0

dξ

2π

∫
d2k

(2π )2

∫
d2k′

(2π )2

×
∑
p,p′

〈k, + ,p|RS(iξ )|k′, − ,p′〉

× 〈k′, − ,p′|RA(iξ )|k, + ,p〉. (2)

An exact expression for the Casimir-Polder interaction
energy between a ground-state atom and a generic surface can
also be written in terms of an integral over real frequencies.

FIG. 1. (Color online) Atom on top of a rectangular grating.

Once such an integral is computed with an appropriate choice
of integration contour in the complex frequency plane, one
recovers Eq. (2), which is in terms of purely imaginary
frequencies ω = iξ . On one hand, the real frequency formal-
ism suffers from highly oscillatory contributions, but allows
for the identification of the relevant modes (evanescent and
propagating) of the electromagnetic field that contribute to
the interaction energy. For example, both modes are known
to play a fundamental role in the Casimir energy in the
plane-plane geometry [31]. We expect that both kinds of
modes also have a key role in the Casimir-Polder atom-grating
interaction (this analysis is beyond the scope of the present
paper). On the other hand, the formalism in terms of purely
imaginary frequencies has a smooth, exponentially decaying
frequency behavior, but it does not allow for the identification
of the separate contributions from evanescent and propagating
modes. However, Eq. (2) does include the total contribution of
all modes.

In this paper, we calculate the exact surface reflection
operator RS for the rectangular (lamellar) grating shown
in Fig. 1. The periodic profile function h(x) has period
d, amplitude a, and corresponds to a groove width s. The
reference plane z = 0 is located at the bottom of the groove.
Translational symmetry along the y direction implies that RS

does not change ky. When defining the polarization basis, we
exploit this symmetry as in waveguide theory: polarization
H is such that Ey ≡ 0 with Ex, Ez, Hx , and Hz given in
terms of Hy by using Maxwell equations. For the electric field
components at a real frequency ω propagating in a medium of
dielectric constant ε, we have EH

x = −icω∂zHy/(εω2 − c2k2
y)

and EH
z = icω∂xHy/(εω2 − c2k2

y). In vacuum (ε = 1), the
corresponding unit vectors are then given by

ε̂±
H(k,ω) = 1√

ω2/c2 − k2
y

(∓
√

ω2/c2 − k2x̂ + kx ẑ). (3)

Polarization E is likewise defined by the condition
Hy ≡ 0, with EE

x = ic2ky∂xEy/(εω2 − c2k2
y) and EE

z =
ic2ky∂zHy/(εω2 − c2k2

y), so that the corresponding unit vec-
tors are given by

ε̂±
E (k,ω) = c

ω

[
ky√

ω2/c2 − k2
y

(−kx x̂ ∓
√

ω2/c2 − k2ẑ)

+
√

ω2/c2 − k2
y ŷ

]
. (4)

Since the surface profile is periodic along the x direction,
the fields are pseudoperiodic functions of x (Bloch’s theorem):
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E(x + d,y,z) = eik
(0)
x dE(x,y,z) for some k(0)

x in the first Bril-
louin zone [−π/d,π/d]. The wave-vector x component of a
given incident plane wave can always be cast in the form

k(j )
x = k(0)

x + j
2π

d
(5)

for some integer j and k(0)
x ∈ [−π/d,π/d]. Diffraction by the

periodic grating will give rise to new Fourier components
modulated by integer multiples of 2π/d. Although these
new Fourier components correspond to different integers j ′
(with j ′ − j representing a given diffraction order), they
all correspond to the same k(0)

x in the first Brillouin zone
according to Bloch’s theorem. For a given incident plane
wave |(k(0)

x + j 2π
d

)x̂ + ky ŷ, − ,p〉, we add, in the homoge-
nous region above the grating (z � a), a superposition of
reflected plane waves |(k(0)

x + j ′ 2π
d

)x̂ + ky ŷ, + ,p′〉 (Rayleigh
expansion), with amplitudes given by the matrix elements
〈j ′,p′|RS |j,p〉 of the grating reflection operator. In the bulk
region z < 0, the dielectric constant is also uniform and
the field is written as a simple plane-wave expansion in
terms of transmission amplitudes. On the other hand, within
the inhomogeneous grating region 0 � z � a, we derive the
nontrivial z dependence of the field by solving coupled
differential equations (differential approach) [26]. We then
solve for the matrix elements 〈j ′,p′|RS |j,p〉 by matching the
different field expansions at z = a and z = 0.

The properties of the reflection operator RS discussed
above allow us to simplify the general expression (2) for the
Casimir-Polder potential energy. By plugging the result (1) for
the atomic reflection operator into (2), we find

U (xA,zA) = h̄

εoc2

∫ ∞

0

dξ

2π

∫ ∞

−∞

dky

2π

∫ π/d

−π/d

dk(0)
x

2π

×
∑
j,j ′

ξ 2

2κj ′
α(iξ ) e2πi(j−j ′)xA/d e−(κj +κj ′ )zA

×
∑
p,p′

〈j,p|RS(k(0)
x ,ky,iξ )|j ′,p′〉 ε̂+

p · ε̂−
p′

′. (6)

The sums over the Brillouin zones j and j ′ run from −∞
to ∞, the polarizations p,p′ are either E or H , and κj =√
k

(j )
x

2 + k2
y + ξ 2/c2 [see Eq. (5)]. The scalar products are

calculated from the expression for the unit vectors given by
Eqs. (3) and (4). When replacing ω → iξ,

√
ω2/c2 − k2 →

iκj , we find

ε̂+
H · ε̂−

H
′ = −k

(j )
x k

(j ′)
x + κjκj ′

ξ 2/c2 + k2
y

,

ε̂+
E · ε̂−

E
′ = 1 + c2k2

y

ξ 2
(1 − ε̂+

H · ε̂−
H

′),

ε̂+
E · ε̂−

H
′ = −ε̂+

H · ε̂−
E

′ = c3ky

(
k

(j ′)
x κj + k

(j )
x κj ′

)
ξ
(
ξ 2 + c2k2

y

) .

The potential (6) does not depend on yA and is a periodic
function of xA (with the same period of the grating) as
expected. By choosing the origin x = 0 at the midpoint of one
of the grooves, the matrix elements 〈j ′,p′|RS |j,p〉 turn out to
be real and consistent with the even parity of the surface profile.

They must also satisfy reciprocity relations [32] which read,
for our polarization basis, κj 〈j,p|RS(k(0)

x ,ky,iξ )|j ′,p′〉 =
(2δpp′ − 1)κj ′ 〈−j ′,p′|RS(−k(0)

x , − ky,iξ )| − j,p〉. By com-
bining these properties, we may cast (6) as U (xA,zA) =∑

j,j ′ Cj,j ′ (zA)e2πi(j−j ′)xA/d in terms of real coefficients
satisfying Cj,j ′ (zA) = Cj ′,j (zA). Thus, Eq. (6) yields a
real potential satisfying the required relations U (xA,zA) =
U (−xA,zA) = U (d − xA,zA) (reflection symmetries with re-
spect to the groove and plateau midpoints).

III. NUMERICAL RESULTS

In this section, we present numerical results for the Casimir-
Polder potential given by (6). We consider a Rb atom, whose
dynamic polarizability α(iξ ) is obtained from Ref. [33],
interacting with an intrinsic silicon grating. The corresponding
dielectric constant ε(iξ ), required for the evaluation of the grat-
ing reflection operator RS, is computed from available data at
real frequencies [34] by using a Kramers-Kronig relation [35].

When evaluating (6), we need to truncate the sum over the
Brillouin zones j,j ′ at some finite value Nmax, so that the
number of zones is 2Nmax + 1. The value of Nmax required
for a given accuracy decreases with increasing distance zA,

because the factor e−(κj +κj ′ )zA eliminates the contribution of
large values of j and j ′. By comparing results obtained from
different values of Nmax, we found that Nmax = 3 was sufficient
to achieve an accuracy at the level of a percent for the numerical
examples considered below.

It is instructive to compare our exact results with
those obtained within the proximity force approximation
(PFA) [36], which here corresponds to computing the potential
U for a given surface profile from the potential U (0) for
a planar surface taken at the local atom-surface distance:
U (xA,yA,zA) ≈ U (0)[zA − h(xA,yA)]. For the rectangular
grating considered here, deviations from PFA are quantified
by the ratio ρ = U (xA,zA)/U (0)(zA) when the atom is on top
of a groove and by ρ = U (xA,zA)/U (0)(zA − a) when the
atom is on top of a plateau.

In Fig. 2 we plot ρ as a function of distance for an atom
above the plateau midpoint xA = d/2 and several different
combinations of amplitude and period, with groove width s =
d/2. We always find ρ < 1, in qualitative agreement with
PWS, with the grooves making the potential less attractive
than the potential of a homogeneous plane surface at zA = a.

When the atom is very far from the surface, zA 
 a, it feels the
corrugation as a very small perturbation of the plane symmetry
and then the potential approaches the value for a planar surface
(ρ = 1). As the distance decreases, the departure from the
plane geometry becomes increasingly important.

The curves corresponding to the same ratio a/d are close
but do not coincide, which is expected since nongeometric
length scales associated with characteristic frequencies of the
Rb atom and the Si bulk are also relevant. For large distances,
the dominant field frequencies are much smaller than the atom
and medium characteristic frequencies, and then the potential
is dominated by the instantaneous response associated with
the zero-frequency polarizability and dielectric constant. Thus,
the potential depends only on the ratios between the geometric
lengths a, d, and zA in this asymptotic limit. On the other
hand, as the distance decreases, finite response times of both
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FIG. 2. (Color online) Variation of ρ = U (xA,zA)/U (0)(zA − a)
versus zA/a and (zA − a)/d (inset) for an atom above the plateau
midpoint xA = d/2. We take fixed values of a and d for each set of
data points. The angular aperture θ = 2 arctan[d/4(zA − a)] shown
in the diagram controls the departure from the PFA limit.

atom and medium give rise to a richer scenario. The crossover
between the long-distance Casimir-Polder and the unretarded
van der Waals regimes is in the range 200–300 nm for a Rb
atom interacting with a Si surface (see, for instance, Fig. 4
of Ref. [24]). When the separation distance decreases below
zA/a = 5, it already corresponds to the transition to the van
der Waals regime for a = 50 nm but not yet for a = 100 nm.
The values for a = 50 nm then move away from the curve for
a = 100 nm and the same a/d = 1/6 as shown in Fig. 2. A
similar effect, for a = 100 nm, 200 nm, and a/d = 1/3 is also
apparent in Fig. 2.

As ρ approaches the PFA limit ρ → 1 at shorter distances,
the amplitude a is no longer the most relevant length scale
capturing the variation with distance. In the inset of Fig. 2,
we plot ρ as a function of (zA − a)/d, which is directly
related to the angular aperture θ = 2 arctan[d/4(zA − a)] of
the plateau width as seen from the atom location above the
plateau midpoint (see the diagram in Fig. 2). When θ is very
close to 180◦ [(zA − a)/d � 1], we expect the effect of the
border of the plateau to be negligible, and then the potential
should be well approximated by the result for an infinite plane
(PFA). The inset of Fig. 2 shows that the variable (zA − a)/d
indeed captures the main effect behind the departure from PFA
as the atom is displaced away from the surface, since the curves
corresponding to different values of amplitude and period
collapse near each other at short distances. For all different
values of a and d shown in the figure, the point of maximum
1 − ρ is near (zA − a)/d ∼ 0.8, corresponding to an angular
aperture θ ≈ 35◦. The maximum 1 − ρ depends mainly on
a/d and is larger for larger a/d as expected.

When the atom is above the groove region, the potential
is stronger than the potential for a planar surface at the

FIG. 3. (Color online) Variation of ρ = U (xA,zA)/U (0)(zA) ver-
sus zA/a for an atom above the groove midpoint xA = 0.

bottom of the groove (ρ > 1), again in qualitative agreement
with the PWS picture. In Fig. 3, we plot ρ as a function
of distance for x = 0 (groove midpoint) and s = d/2. The
curves corresponding to different (fixed) values of a and d

merge at distances zA/a >∼ 8. This remarkable property was
found in Ref. [30] in the context of the scalar Casimir-Polder
model. It may be interpreted as an effect of averaging the
small length scales associated with the surface profile when
considering the long-wavelength field fluctuations that provide
the main contribution at large distances. At shorter distances,
the curves move apart following the order of larger a/d.

Although atomic/material frequency scales play a relevant role
at zA < 300 nm, the values for different a and d with the same
a/d shown in Fig. 3 are still relatively close.

From an overall comparison of Figs. 2 and 3, we may
conclude that the relative deviation from PFA |ρ − 1| is
generally larger above the groove than above the plateau.
In Fig. 4, we plot |ρ − 1| as a function of the lateral
position for a fixed local distance zA − h(xA) = 3a, with a =
100 nm, d = 600 nm, and s = 300 nm. PFA is indeed worse
above the groove, where the deviation increases rapidly as one
approaches the corner. Above the plateau, PFA is also worse
near the corner, but the variation of ρ with lateral position is
much smaller.

At a given plane z = zA, the potential profile along
the x axis is approximately sinusoidal for the relatively
large distances considered here. In Fig. 5(a), we compare
the values for U (xA,zA)/U (0)(zA − a/2) with a sinusoidal
variation (solid line) corresponding to period d and amplitude
[U (d/2,zA) − U (0,zA)]/2. We use zA = 3a and the same
parameters employed in Fig. 4.

At very large distances, the main contribution comes from
specular reflection at the first Brillouin zone j = j ′ = 0,

yielding a flat potential according to Eq. (6) (see Figs. 2
and 3). As the distance decreases, the major correction,
corresponding to the first diffraction order j − j ′ = ±1,

produces a sinusoidal modulation with period d. Deviation
from the sinusoidal shape (coming from |j − j ′| � 2) is such
that the lateral force stiffness |∂2U/∂x2

A| is slightly larger at
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FIG. 4. (Color online) Lateral variation of |ρ − 1| at a fixed local
distance zA − h(xA) with a = 100 nm and d = 600 nm. We take
zA = 3a above the groove (0 � xA < d/4) and zA = 4a above the
plateau (d/4 � xA < d/2).

the groove midpoint than at the plateau midpoint, as shown in
Fig. 5(a).

The deviation from the sinusoidal shape and the amplitude
of oscillation are controlled by the angular aperture parameter
(zA − a)/d, whereas zA/a controls the convergence of the
spatial average 〈U (xA,zA)〉 to its large distance limit U (0)(zA −
a/2) = [U (0)(zA − a) + U (0)(zA)]/2 + O(a/zA)2 when s =
d/2. For instance, in Fig. 5(b) we plot the potential as a
function of xA/d for zA = d = 2a = 200 nm. These param-
eters correspond to zA/a = 2 and (zA − a)/d = 0.5, to be
compared with zA/a = 3 and (zA − a)/d = 0.33 for Fig. 5(a).
While the average potential is closer to the asymptotic value
U (0)(zA − a/2) in Fig. 5(a) (larger zA/a), the amplitude is
smaller and the shape closer to the sinusoidal fit in Fig. 5(b)
[larger (zA − a)/d]. As the atom is displaced away from the
surface, the potential becomes more sinusoidal and with a
smaller amplitude. With the same parameters of Fig. 5(b), the
amplitude decreases by two and three orders of magnitude at
zA = 3a and zA = 4a, respectively.

IV. CONCLUDING REMARKS

We have shown that PFA overestimates the potential
strength above the plateau. As the atom is displaced away
from surface, the deviation 1 − ρ is mainly controlled by the
parameter (zA − a)/d associated to the angular aperture of the
plateau as seen by the atom. The maximum deviation takes
place near (zA − a)/d = 0.8 and is larger for deeper grooves
(larger a/d), as expected. As the distance is increased beyond
this value, the potential again approaches the result for a planar
surface. On the other hand, the potential is underestimated by
the PFA above the groove. The deviation increases strongly
as the atom is laterally displaced closer to a corner, where the
presence of the ridge walls have a stronger effect.

(a)

(b)

FIG. 5. (Color online) Lateral variation of the Casimir-
Polder potential divided by U (0)(zA − a/2) for a = 100 nm with
(a) d = 2zA = 6a and (b) d = zA = 2a. The solid lines represent the
sinusoidal function of period d that coincides with the exact potential
at the groove and plateau midpoints.

The naive PWS picture of the Casimir-Polder interaction
agrees qualitatively with several features found in this paper.
Nevertheless, PWS typically underestimates the magnitude of
the Casimir-Polder potential in the grating geometry [19], par-
ticularly in the nonperturbative regime considered here [17].
For instance, it predicts an anisotropy of the Casimir-Polder
potential far too small to nucleate vortices in a Bose-Einstein
condensate by rotation of the grating, whereas the exact theory
presented here predicts an anisotropy above the required values
under realistic experimental conditions [17].

We have shown that the contribution of higher diffraction
orders to the potential is increasingly small as the distance
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increases, resulting in a sinusoidal variation along the trans-
verse x direction for (zA − a)/d >∼ 0.5 (aperture angle smaller
than 53o).

The scattering approach developed in this paper might be
readily adapted to consider more general two-dimensional
periodic patterns, for instance the pillars structure employed
in the quantum reflection experiment reported by Ref. [9].
Recently, the Casimir interaction between two material sur-
faces imprinted with two-dimensional periodic patterns has
been analyzed in detail [37]. The method developed here thus

paves the way for the quantitative analysis of a variety of
interesting geometries with applications in enhanced atomic
quantum reflection and diffraction.
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